A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints

نویسندگان

  • Xue-Bin Liang
  • Jun Wang
چکیده

This paper presents a continuous-time recurrent neural-network model for nonlinear optimization with any continuously differentiable objective function and bound constraints. Quadratic optimization with bound constraints is a special problem which can be solved by the recurrent neural network. The proposed recurrent neural network has the following characteristics. 1) It is regular in the sense that any optimum of the objective function with bound constraints is also an equilibrium point of the neural network. If the objective function to be minimized is convex, then the recurrent neural network is complete in the sense that the set of optima of the function with bound constraints coincides with the set of equilibria of the neural network. 2) The recurrent neural network is primal and quasiconvergent in the sense that its trajectory cannot escape from the feasible region and will converge to the set of equilibria of the neural network for any initial point in the feasible bound region. 3) The recurrent neural network has an attractivity property in the sense that its trajectory will eventually converge to the feasible region for any initial states even at outside of the bounded feasible region. 4) For minimizing any strictly convex quadratic objective function subject to bound constraints, the recurrent neural network is globally exponentially stable for almost any positive network parameters. Simulation results are given to demonstrate the convergence and performance of the proposed recurrent neural network for nonlinear optimization with bound constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design

The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...

متن کامل

An efficient modified neural network for solving nonlinear programming problems with hybrid constraints

This paper presents ‎‎the optimization techniques for solving‎‎ convex programming problems with hybrid constraints‎.‎ According to the saddle point theorem‎, ‎optimization theory‎, ‎convex analysis theory‎, ‎Lyapunov stability theory and LaSalle‎‎invariance principle‎,‎ a neural network model is constructed‎.‎ The equilibrium point of the proposed model is proved to be equivalent to the optima...

متن کامل

Regularity Conditions for Non-Differentiable Infinite Programming Problems using Michel-Penot Subdifferential

In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are locally Lipschitz‎. ‎Necessary optimality conditions and regularity conditions are given‎. ‎Our approach are based on the Michel-Penot subdifferential.

متن کامل

Designing Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network

In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 11 6  شماره 

صفحات  -

تاریخ انتشار 2000